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Success and Limits
of Mathematization

The two conspicuous traits of mathematies are, first, pre-
cision, and, second, the availability of algorithms and
rigorous proofs. We regiment a technical language with a
view to achieving the most efficient formulation we can 9f
the regularities that hold good of the subject matter; and in
some cases this effort produces an algorithm, rendering the
laws recognizable by computation. In other cases one settles
for a proof procedure, consisting perhaps of a compact codifi-
cation of so-called axioms and some rules for generating
further laws from them.

Mathematical language is the far extreme of this sort of
progress. Mathematization is what this progress may be
called, if only in its farther reaches.

There has heen a perverse tendency to think of mathe-
matics primarily as abstract or uninterpreted and only sec-
ondarily as interpreted or applied, and then to philosophize
about application. This was the attitude of Russell at the turn
of the century, when he wrote that in pure mathematics “we
never know what we are talking about, nor whether what
we are saying is true.””! He expressed the same attitude less

This piece, plus two initial pages here omitted, was my contribution
to a symposium under this title at the sixteenth International Congress
of "Philosophy, Diisseldorf, 1978.

1. Mysticism and Logic, p. 75. The passage dates from 1901.
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wittily thus: “Pure mathematics is the class of all proposi-
tions of the form ‘p implies 7', where p and ¢ are proposi-
tions containing one or more variables, the same in the two
propositions, and neither ‘p’ nor ‘e’ contains any constants
except logical constants.”? On this view all that is left to
the mathematician, for him to be right or wrong about, is
whether various of his uninterpreted sentence schemata fol-
low logically from his uninterpreted axiom schemata. All
that is left to him is elementary logic, the first-order predi-
cate calculus.

This disinterpretation of mathematics was a response to
non-Euclidean geometry. Geometries came to be seen as a
family of uninterpreted systems. The first geometry to be
studied was indeed abstracted from the technology of archi-
tecture and surveying in ancient Egypt, but it is to be reck-
oned as pure mathematics only after disinterpretation ; such
was the new view. From geometry the view spread to mathe-
matics generally.

What then of elementary arithmetic? Pure number, pure
addition, and the rest would be viewed as uninterpreted ; and
their application, then, say to apples, would consist perhaps
in interpreting the numbers five and twelve as piles of apples,
and addition as piling them together.

I find this attitude perverse. The words ‘five’ and ‘twelve’
are at no point uninterpreted; they are as integral to our
interpreted language as the word ‘apple’ itself. They name
two intangible objects, numbers, which are sizes of sets of
apples and the like. The ‘plus’ of addition is likewise in-
terpreted from start to finish, but it has nothing to do with
piling things together. Five plus twelve is how many apples
there are in two separate piles of five and twelve, without
their being piled together.

The expressions “five’, ‘twelve’, and ‘five plus twelve’ differ
from ‘apple’ in not denoting bodies, but this is no cause for
disinterpretation; the same can be said of such unmathe-
matical terms as ‘nation’ or ‘species’. Ordinary interpreted
scientific discourse is as irredeemably committed to abstract
objects—to nations, species, numbers, functions, sets—as it

2. Principles of Mathematics, p. 3.
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is to apples and other bodies. All these things figure as
values of the variables in our overall system of the. world.
The numbers and functions contribute just as genuinely to
physical theory as do hypothetical particles. _

Arithmetic is a paragon, certainly, of the mathematical
virtues. Its terms are precise and they lend themselvps to
admirable algorithms. But these virtues were achleved
through the progressive sharpening and regimentl.ng of
terms and idioms while they remained gmbedded in the
regular interpreted language. Arithmeti.c is rela’-ced to un-
regimented language in the same way as is the logic of truth
functions; there is no call for disinterpretation fo]lc_)wed by
application, The case of set theory, again, is similar; it comes
of a sharpening and regimenting of ordinary talk of prop-
erties or classes. Arithmetic, logic, and set theory are_pure.]y
mathematical, but their purity has nothing to do with 'dIS-
interpretation; all it means is that the arithmetic.al, logical,
and set-theoretic techniques are formulated without re-
course to locutions from outside the arithmetical or logical
or set-theoretic part of our general vocabulary. Purity is not
uninterpretedness. _ .

A progressive sharpening and regimenting of or_dmary
idioms: this is what led to arithmetic, symbolic logic, and
set theory, and this is mathematization. Once it has been
achieved by arduous evolution in one domain, it may some-
times be achieved swiftly in another domain by analogy : fgr
the mathematical notation that was developed in one dqmam
may, by reinterpretation, be put to use in ano_ther. A s1mp¥e
example is the reinterpretation of truth functions as eIectr.lc
circuits. An even simpler example is the use of graphs in
economics and elsewhere. Geometry, to begin with, is. a
sharpening and regimenting of existing idiO{ns regarding
physical space, the space of taut strings and light rays a'nd
trajectories; by reinterpretation, afterward, wl}at had orig-
inally designated a curve in physical space might be rein-
terpreted as expressing a relation between supply and
demand, or between employment and national product, or be-
tween the sine of an angle and the size of the angle. These
analogical reinterpretations have fostered the unfortunate
conception of mathematics as basically uninterpreted.
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Analogy also takes another line. After some subject mat.-
ter has been well mathematized and has come to enjoy g
smooth algorithm, the mathematician may construct another
and this time genuinely uninterpreted system in partig]
analogy. He may do so by denying one of the component
laws, or by generalizing on some special feature. Such was
the origin of the non-Euclidean geometries and n-dimen-
sional geometry. Systematic variation of this sort, on a
wholesale basis, is the business of abstract algebra. Some
of the systems thus produced find useful interpretations
afterward, but the driving force is not that ; it is intellectual
curiosity regarding the structures themselves. There is thus
no denying the magnitude of the role played in modern
mathematics by uninterpreted systems. It is the tail that
has come to wag the dog. What I was deploring, however,
in deploring the all too popular view represented by the early
Russell, was the failure to recognize the existence—let alone
the philosophical importance—of the little old dog itself.

In a higher sense, even abstract algebra and the abstract
geometrical studies may be said to be fully interpreted
studies after all; they are chapters of set theory. A group,
for instance, is simply a function of a certain sort, It is any
associative two-place function having a unique identity ele-
ment and for each element an inverse. But a two-place funec-
tion is a set of triples, and thus group theory is the part of
set theory that explores the properties common to functions
that meet these conditions, Other abstract algebras can be
identified with other set-theoretic structures in a similar
spirit.

Mathematics can stand aloof from application to natural
science also without being uninterpreted, Higher set theory
is a striking case of this, I already urged that set theory,
arithmetic, and symbolic logic are all of them products of
the straightforward mathematization of ordinary inter-
preted discourse—mathematization in situ. Set-theoretic
laws come of regimenting the ways of reasoning about
classes or properties, ways of reasoning that already pre-
vailed more or less tacitly in natural science and ordinary
discourse. More particularly, as it happens, this regimenta-
tion has been a matter of clearing away implicit contradic-
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tions. Once the laws are formulated, however, along as simple
and general lines as we can manage, we find that they are
rich algo in implications that outrun any past or contem-
plated uses, implications regarding infinite sets and trans-
finite numbers. Bifurcations emerge, moreover, over the
axiom of choice or the continuum hypothesis or the existence
of inaccessible numbers, where there is a free option be-
tween alternative principles without there being any effect
on applications in natural science. Mathematicians are driven
to pursue these matters by the same disinterested intellectual
curiosity that impels them into abstract algebras and odd
geometries; yet in this case, unlike those, there has been
no departure from interpreted theory.

The branch of mathematics that is most widely and con-
spicuously used is elementary arithmetic. Next come the
parts of mathematics that are built on arithmetic: the al-
gebra of real and complex numbers, the theory of functions,
the differential and integral calculus. The ubiquitous use of
elementary arithmetic was to be expected, since all sorts
of things can be counted and many of them are worth count-
ing. After counting comes measurement. A great invention,
measurement; it enables us to compare amounts of valuable
stuff that does not lend itself directly to counting. It is mea-
surement that makes for the widespread use of the quantita-
tive branches of mathematics beyond elementary arithmetic.

But if the need to compare amounts of valuable stuff was
what fostered the invention of measurement, that use of
measurement has subsequently been dwarfed by other uses.
Measurement is central to natural science because of the pre-
dictive power of concomitant variation. Let us therefore turn
our attention briefly to prediction, and induction.

Induction, primitively, was a mere matter of expecting
that events that are similar by our lights will have sequels
that are similar to one another. The larger the class of
mutually similar antecedent events may be, all of which have
had mutually similar sequels, the stronger is the presump-
tion of a similar sequel the next time around. But the pre-
sumption is increased overwhelmingly if variations among
the antecedent events can be correlated with variations in
the sequels. For this purpose measurement is brought to

L
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bear. Measurement is devised for some varying feature of
the ﬁw?mwimm similar antecedent events, and also for some
varying feature of the otherwise similar sequels, and a con-
stant ratio or some other simple correlation is established
between the two variations. Once this is achieved, a causal
connection can no longer be doubted.

Hence the advantage, for science, of quantitative terms;
m:.g they are eagerly sought for the various branches of
mm_msnm. These terms and the methods of measuring will
differ from branch to branch, but the purely numerical part
of the apparatus will be the same for all. Hence the very
general scientific utility of analysis, or quantitative mathe-
matics.

Wm.om.cmm of the power of these methods, and ultimately the
predictive power of concomitant variation, sciences clamor
to .Um quantitative; they clamor for something to measure.
This is both good and bad. It is very good indeed if the mea-
surable quantity can be found to play a significant role in
the subject matter of the science in question. It is bad if in
the quest for something to measure the scientist turns his
back on the original concerns of his science and is borne
away, however smoothly, on a tangent of trivialities. Ills of
mathematization, as well as successes, can be laid to the
quest for quantitativity.

It is in the quantitative that mathematization exerts its
most overwhelming attraction. More exotic branches of
E.mﬁrmgmﬂnm_ however, uninterpreted to begin with, are like-
wise enlisted for application now and again: topology, per-
haps, or Hilbert space. In such cases again there is the
duality of good and evil to reckon with. A happy mathe-
matization can work wonders, and the hope of such gains is
always the ostensible motive of mathematization. But there
are other contributing drives, counter-productive ones, of
which the individual himself is apt to be unaware. ermw,m is
methodolatry, or the love of gadgetry: the tendency to take
more satisfaction in methods than in the results. Also there
is @m repose, the respite from hard thought and hairy de-
cisions, that a smooth algorithm can bring. In these ways one
may be lured into problems that lend themselves to favor-
able techniques, though they not be the problems most cen-
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tral to one’s concerns. The rise of the computer aggravates
this danger.

We can sense these tensions already in the following
humdrum example, which involves no computers and no ap-
preciable mathematics. Amid the vague and amorphous mat-
ters confronting the social anthropologist, there are the
clean-cut kinship structures. They loom large in primi-
tive societies, and the anthropologist is glad ; for they submit
nicely to elementary symbolic logic, and do not need even
that. Now it is good that there is this firm structure to which
to relate other more important but less tangible factors. I
suspect nevertheless that kinship cuts a disproportionate
figure in anthropology just because of the methodological
solace that it brings.

I have touched on the nature of mathematization, arguing
that in its primary form it develops within a science rather
than being applied from outside. It is continuous with the
growth of precision, and it blossoms at last into algorithms
and proof procedures. The most significant continuing force
for mathematization was measurement, because of the bene-
fits of concomitant variation. Finally I noted the danger of
being seduced, by the glitter of algorithm, into mathematiz-
ing one’s subject off the target. But I should say something,
still, about the famous formal limits to mathematization
that are intrinsic to the mathematics itself.

Building on Gédel’s work, Alonzo Church and Alan Turing
showed in 1936 that mathematization in the fullest sense is
too much to ask even for so limited a subject as elementary
logic. They proved that there can be no complete algorithm,
no decision procedure, for the first-order predicate calculus.
There is, of course, a complete proof procedure for that
calculus. However, it follows from the Church-Turing theo-
rem that there cannot even be a complete proof procedure for
nonprovability in that calculus. From this it follows further
that there cannot be a complete proof procedure for any
branch of mathematics in which proof procedures can be
modeled. Elementary number theory is already one such
branch ; hence Godel’s original incompleteness theorem.

Besides these necessary internal limitations on proof and
algorithm, there is commonly also a voluntary one in the case
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of a natural science. Mathematize as he will, and seek aj
gor}thms as he will, the empirical scientist is not going tc;
aspire to an algorithm or proof procedure for the whole of
his science; he would not want it if he could have it. He wi]]
want rather to keep a large class of his sentences open to the

contingencies pf future observation. It is only thus that hig
theory can claim empirical import,




